Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.
Тел.: 8 (495) 772-95-90 *15366
E-mail: dekpsy@hse.ru
Фактический адрес: 101000, г. Москва, Армянский пер. 4, корп. 2
Почтовый адрес: 101000, г. Москва, ул. Мясницкая, д. 20 (департамент психологии)
Психология – одна из наиболее бурно развивающихся в настоящее время наук о человеке, включающая, с одной стороны, такие фундаментальные исследовательские направления, как общая психология и психология личности, социальная и кросскультурная психология, когнитивная психология и психофизиология, экономическая психология и психология принятия решения, а с другой – такие практико-ориентированные направления, как психологическая диагностика, индивидуальное и семейное психологическое консультирование, психоанализ, организационная психология. Все эти направления развиваются в департаменте ведущими российскими психологами, для которых выбор психологии стал выбором не только профессии, но и судьбы.
Иванова Н. Л., Купрейченко А. Б., Патоша О. И. и др.
Юрайт, 2024.
Gorin A., Kuznetsova L., Kislov A. et al.
Frontiers in Human Neuroscience. 2024.
Беленков В. Е., Koncha V., Sedashov E.
In bk.: 2024 17th International Conference on Management of Large-Scale System Development (MLSD). IEEE, 2024. P. 1-3.
Арман О., Eremenko J. A., Zinchenko O. et al.
Zinchenko, O., Onurcan, A., Eremenko, Y., & Shestakova, A. (2024, November 21). CROSS-CULTURAL STUDY ON THE EFFECT OF PERCEIVED TASTES ASSOCIATED TO SOUNDS ON THE PERCEPTION OF FOOD TEXTURES. https://doi.org/10.31234/osf.io/n37tw. Zinchenko, O., Onurcan, A., Eremenko, Y., & Shestakova, A. (2024, November 21). CROSS-CULTURAL STUDY ON THE EFFECT OF PERCEIVED TASTES ASSOCIATED TO SOUNDS ON THE PERCEPTION OF FOOD TEXTURES. https://doi.org/10.31234/osf.io/n37tw. PsyArXiv, 2024
Микрочип в коре мозга дает парализованному человеку возможность самостоятельно взять чашку кофе, а испытуемые в лаборатории играют в «Супер Марио», просто думая о движениях. О том, как это происходит, и о нейрокомпьютерных интерфейсах, разрабатываемых в НИУ ВШЭ, рассказала младший научный сотрудник Центра нейроэкономики и когнитивных исследований Елизавета Окорокова в рамках проекта «Университет, открытый городу: Лекции молодых ученых Вышки в Культурном центре ЗИЛ».
Кэти Хатчинсон 15 лет назад попала в тяжелую автокатастрофу, из-за полученной травмы спинного мозга она оказалась полностью парализованной и лишилась речи. Много лет она провела недвижимой в инвалидном кресле, целиком завися от других людей. Но затем ученые из Университета Брауна начали разрабатывать «мозг-компьютерный» интерфейс, который позволил бы Кэти совершать мелкие движения с помощью роботизированной руки. В сенсомоторную кору ее мозга был внедрен микрочип, и в течение года Кэти училась управлять рукой-роботом силой мысли. Просто думая о том, что она двигает рукой, Кэти действительно двигала ею. Так, спустя 15 лет, она смогла самостоятельно взять и поднести к лицу термос с кофе и отпить из него.
По словам Елизаветы Окороковой, это был один из первых случаев, когда удалось восстановить моторные функции для полностью парализованного человека. На этом примере легко объяснить, что такое «мозг-компьютерный» интерфейс: это система, которая позволяет человеку управлять некой машиной (рукой-роботом, или инвалидным креслом, или гаджетом) с помощью сигналов своего организма (мозга). «Мозг-компьютерные» интерфейсы используются в клинических целях для восстановления пациентов, но не только. Здоровые люди хотят жить веселее и интереснее, поэтому крупные фирмы с помощью тех же технологий хотят разрабатывать различные гаджеты.
Мозг — это «главный процессор» человека. Все функции мозга до сих пор не известны, ученые находятся лишь на пути к пониманию того, как и что он делает. Помимо собственно головного мозга ключевую роль играют центральная нервная система (добавляется спинной мозг) и периферическая нервная система, то есть нервы, а также органы зрения, обоняния и осязания. Человек рождается с фиксированным количеством нейронов (около 100 млрд). Эти клетки уникальны: они не восстанавливаются, зато могут друг с другом «общаться». Они объединяются в сети и сообщаются электронными импульсами — почти как в электрической цепи.
Есть два типа методов изучения мозга. Первый — инвазивный, путем изучения мозга изнутри во время операции или с помощью внедрения специального аппарат внутрь организма. Инвазивные методы хороши тем, что позволяют напрямую добраться до сигналов нервной системы и гораздо точнее их считывать. Но вскрывать мозг не всегда возможно и хочется. Тогда на помощь приходят неинвазивные методы. Среди них: электроэнцефалограмма (считывание электрических импульсов с поверхности головы), магнитная энцефалография (считывание магнитных полей с поверхности головы), МРТ (сканирование активности разных областей мозга), айтрекинг («слежение» за взглядом человека).
«Мозг-компьютерные» интерфейсы должны быть персонализированными. Нельзя просто перенести данные, полученные от одного человека, на другого пользователя и ожидать, что интерфейс сработает
Впрочем, самый известный широкой публике из неинвазивных методов — МРТ — не годится для создания «мозг-компьютерных» интерфейсов. Дело в том, что прибор для МРТ — слишком громоздкая конструкция, а интерфейс должен быть мобильным и портативным. Поэтому наиболее часто используется электроэнцефалограмма (ЭЭГ): ее устройство напоминает шапочку с электродами.
«Но на этом романтика заканчивается, — отмечает Елизавета Окорокова. — С помощью ЭЭГ вы получаете огромный массив данных, который нужно как-то обработать и отсеять лишние сигналы, чтобы понять, что же происходит».
Обработка данных ведется с помощью математических моделей. Нужные данные потом трансформируются и переносятся на интерфейс, который теперь может, например, «реконструировать» то или иное движение конечности.
Важный момент: «мозг-компьютерные» интерфейсы должны быть персонализированными. Нельзя просто перенести данные, полученные от одного человека, на другого пользователя и ожидать, что интерфейс сработает.
«Мозг-компьютерные» интерфейсы нуждаются в тестировании. Чтобы испытуемому во время экспериментов не было скучно, в лаборатории Вышки ему предлагают игровой формат. Например, силой мысли сыграть в «Супер Марио»: если испытуемый думает о правой руке, герой компьютерной игры бежит вправо, если о левой — налево. Проводят эксперименты и с «имитацией» большего количества движений: помимо рук добавляются ноги и даже язык.
Такие эксперименты, начинающиеся как игровые, в конечном счете востребованы в клиническом плане: управлять можно не только компьютерным персонажем, но и инвалидной коляской и другими приспособлениями, которыми пользуются пациенты с тяжелыми травмами. Эта система может позволить людям, лишившимся речи, общаться: их мысли будут трансформироваться во фразы.
Но что если проблема не в отказе спинного мозга и параличе, а в отсутствии какого-то органа чувств или конечности? Интерфейсы, способные заместить их, также разрабатываются в Вышке. В их основе — анализ сигналов миограммы (мышечной активности кисти руки и предплечья). Подробнее о проекте Елизаветы Окороковой и ее коллег, который должен привести к созданию интеллектуального протеза кисти, можно прочитать здесь.