• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Контакты

Тел.: 8 (495) 772-95-90 *15366

E-mail: dekpsy@hse.ru

Фактический адрес: 101000, г. Москва, Армянский пер. 4, корп. 2

Почтовый адрес: 101000, г. Москва, ул. Мясницкая, д. 20 (департамент психологии)

Руководство
Заместитель руководителя Березнер Тимофей Александрович
Заместитель руководителя Котова Марина Викторовна
Книга
Атлас человекоцентричности: русская школа

Ким Е. В., Беляева А. В., Амосова О. Н. и др.

М.: Издательство Института передовых исследований человека и общества, 2025.

Статья
Investigating the reproducibility of the social and behavioural sciences
В печати

Miske O., Abatayo A. L., Daley M. et al.

Nature. 2026.

Глава в книге
Теоретические и эмпирические различия семантического и аффективного модусов валентности

Пушников А. А.

В кн.: Психология творчества: традиции, инновации, перспективы. Материалы Международной научной конференции, посвященной 105-летию со дня рождения Я. А. Пономарёва. М.: Институт психологии РАН, 2025. С. 303-306.

Доклад по Affective computing

Мария Константинова    Ольга Перепелкина
В департаменте психологии 18 января 2017 года состоялся доклад Марии Константиновой и Ольги Перепёлкиной (Neurodata Lab) «Affective computing». Докладчики рассказали об этой области исследований в целом и подробнее о своих разработках в области автоматического распознавания эмоций.

Affective computing – это междисциплинарная область, объединяющая представителей когнитивных и социальных наук, в том числе специалистов по психологии эмоций, искусственному интеллекту и обработке естественного языка. Интерес к этой области обусловлен широким спектром перспективных приложений во многих сферах, таких как виртуальная и дополненная реальность, игровая индустрия, биометрия и безопасность, цифровая медицина и т. д. Цель исследований в области affective computing - интеллектуальные системы для обнаружения, распознавания, интерпретации и моделирования человеческих эмоций. Выражение эмоций может осуществляться через различные каналы, включая лицевую экспрессию, движения глаз, вокальные характеристики, кинематику тела, физиологию. Большинство исследований автоматического распознавания эмоций используют лица в качестве стимулов, реже они включают речь и еще реже – жесты. Однако естественные эмоции трудно классифицировать с использованием одного канала, поэтому в последние годы становятся все более распространенными мультимодальные системы.

Докладчики подробно рассказали, как они разрабатывают свою систему автоматического распознавания эмоций, основанную на мультимодальных данных. Выступление вызвало большой интерес у слушателей. Основные вопросы и состоявшаяся дискуссия касались того, как оценить эффективность таких систем, каковы могут быть области их применения на практике и какие этические проблемы могут возникать при автоматическом распознавании эмоций.