Attention, computational modeling and eye-movement research seminar

Neural networks In
computational modeling

A brief overview

Georgii Zhulikov
24.11.2017

Deep belief networks

Generative

Unsupervised

Flexible (can be upgraded to supervised)

DBNSs are based on simple networks - restricted Boltzmann machines
Matlab implementation - “DeeBNet” toolbox
(http://ceit.aut.ac.ir/~keyvanrad/DeeBNet%20Toolbox.html)

e RBMs are researched

http://ceit.aut.ac.ir/~keyvanrad/DeeBNet%20Toolbox.html

DeeBNet

e Works on Windows and Linux (needs a fix for Mac, I'll send it in a letter)

e Pipeline:
o Prepare data
o Set up layer parameters
o Train the network
o [Train the network as a supervised one]
o Check the results

e The toolbox provides functions for all parts of the pipeline
e Compatible with Matlab Neural Network toolbox
e Documentation can be better

Setting up DeeBNet data

data=DataClasses.DataStore() ;
data.valueType=ValueType.gaussian;
data.trainData = myTrainData;
data.testData = myTestData;
data.validationData = myValidationData;

Data will be used later for training
dbn. train(data) ;

For classification networks there are also fields for labes in DataStore class

Setting up DeeBNet layers

dbn=DBN ('autoEncoder') ;

rbmParams=RbmParameters (300 ,ValueType.probability) ;

rbmParams . samplingMethodType=SamplingClasses.SamplingMethodType.PCD;
rbmParams .performanceMethod='reconstruction';

rbmParams .maxEpoch=100;

dbn .addRBM (rbmParams) ;

Then repeat for every layer.

There are additional parameters that help better define a network for its task, but
they are not documented well, so the only way to learn what they do in practice is
to experiment.

Training and testing DeeBNet network

dbn. train(data) ;
dbn.reconstructbData (data.testData(n,:),1)
Additional steps in case of classifier:

classNumber=dbn.getOutput (data. testData, 'bySampling') ;
errorBeforeBP=sum(classNumber~=data.testLabels) /length (classNumber)

dbn.backpropagation (data) ;

classNumber=dbn.getOutput (data. testData) ;
errorAfterBP=sum(classNumber~=data. testLabels) /length (classNumber)

Matlab autoencoders

Unsupervised

Flexible

Generative

Have great examples:
https://www.mathworks.com/help/nnet/examples/training-a-deep-neural-netwo
rk-for-digit-classification.html

e Have good documentation

e More black-box-like than DBNs in terms of computational modeling research

https://www.mathworks.com/help/nnet/examples/training-a-deep-neural-network-for-digit-classification.html
https://www.mathworks.com/help/nnet/examples/training-a-deep-neural-network-for-digit-classification.html

Using Matlab autoencoders

autoencl = trainAutoencoder (xTrainImages,hiddenSize,
'MaxEpochs' , 6400,
%%% additional parameters %%%

)

xTrainImages: a cell array or a matrix with training data
hiddenSize: number of hidden nodes of this layer

figure ()
plotWeights (autoencl) ;

xReconstructed = predict (autoenc,myImage) ;
imshow (xReconstructed{0}) ;

A pure autoencoder is only good for reconstruction, but it can also be used to create deep networks

Stacking autoencoders

featl = encode (autoencl, xTrainImages) ;
feat1 now represents training data

autoenc2 = trainAutoencoder (featl,hiddenSize2,
'MaxEpochs',100, ..);

feat2 = encode (autoenc2, featl) ;

Now feat2 is just data that can be used as any other data for training networks. We can train a softmax
layer to classify this set of features, but we need labels (tTrain) for that.

softnet = trainSoftmaxlLayer (feat2,tTrain, 'MaxEpochs',b400) ;

Now we can stack these layers into a single network that will perform all the sequential encoding and
classification automatically

deepnet = stack (autoencl, autoenc2,softnet);
view (deepnet)

Stacking autoencoders

deepnet = stack (autoencl,autoenc2,softnet);
Only one layer here is trained using supervised learning.

We can think of this as a “pre-trained” network. We can fine tune it by training the whole network on a set
of data.

deepnet = train(deepnet,xTrain, tTrain) ;

This way the use of autoencoders helps initialize a deep classifier so training becomes fine tuning and the
results can be expected to be better than with simple training.

Convolutional neural networks

Classifiers

Supervised

Good for images: translation invariance, local connectivity

Can be built in Matlab NN toolbox(needs to be assembled from layers)

There are good examples
https://www.mathworks.com/help/nnet/deep-learning-image-classification.html

Documented

(There are convolutional autoencoders that allow the “Good for images”
benefits to be used for generative networks, but you have to use external
toolboxes for this)

https://www.mathworks.com/help/nnet/deep-learning-image-classification.html

Setting up Matlab networks

Function trainNetwork can work with different data.

e A set of images (imageDatastore object)
A 4-D array (width, height, channel, images)
e Other

myNet = trainNetwork (trainData, layers,options) ;

We need to define layers and options

Setting up layers for a convolutional network

layers = [...
imageInputLayer ([28 28 1])

convolution2dLayer ([4 3],12)
relulayer
crossChannelNormalizationLayer (4)
maxPooling2dLayer (2, 'Stride',2)
convolution2dLayer (5,16)
relulayer
crossChannelNormalizationLayer (4)
maxPooling2dLayer (2, 'Stride',2)
fullyConnectedLayer (256)
relulayer

fullyConnectedLayer (10)
softmaxLayer
classificationlayer];

Setting up options and using the network

options = trainingOptions('sgdm', ...
'MiniBatchSize',5, ...
'MaxEpochs',3, ...
'InitialLearnRate',0.0001);

myNet = trainNetwork (trainData,layers,options);

predictedLabels = classify (myNet,6 testData) ;
accuracy = sum(predictedLabels==testLabels) /numel (predictedLabels)

Thank you

