
Neural networks in
computational modeling

A brief overview

Georgii Zhulikov
24.11.2017

Attention, computational modeling and eye-movement research seminar

Deep belief networks

● Generative
● Unsupervised
● Flexible (can be upgraded to supervised)
● DBNs are based on simple networks - restricted Boltzmann machines
● Matlab implementation - “DeeBNet” toolbox

(http://ceit.aut.ac.ir/~keyvanrad/DeeBNet%20Toolbox.html)
● RBMs are researched

http://ceit.aut.ac.ir/~keyvanrad/DeeBNet%20Toolbox.html

DeeBNet

● Works on Windows and Linux (needs a fix for Mac, I’ll send it in a letter)
● Pipeline:

○ Prepare data
○ Set up layer parameters
○ Train the network
○ [Train the network as a supervised one]
○ Check the results

● The toolbox provides functions for all parts of the pipeline
● Compatible with Matlab Neural Network toolbox
● Documentation can be better

Setting up DeeBNet data

data=DataClasses.DataStore();
data.valueType=ValueType.gaussian;
data.trainData = myTrainData;
data.testData = myTestData;
data.validationData = myValidationData;

Data will be used later for training

dbn.train(data);

For classification networks there are also fields for labes in DataStore class

Setting up DeeBNet layers

dbn=DBN('autoEncoder');

rbmParams=RbmParameters(300,ValueType.probability);
rbmParams.samplingMethodType=SamplingClasses.SamplingMethodType.PCD;
rbmParams.performanceMethod='reconstruction';
rbmParams.maxEpoch=100;
dbn.addRBM(rbmParams);

Then repeat for every layer.

There are additional parameters that help better define a network for its task, but
they are not documented well, so the only way to learn what they do in practice is
to experiment.

Training and testing DeeBNet network

dbn.train(data);

dbn.reconstructData(data.testData(n,:),1)

Additional steps in case of classifier:

classNumber=dbn.getOutput(data.testData,'bySampling');
errorBeforeBP=sum(classNumber~=data.testLabels)/length(classNumber)

dbn.backpropagation(data);

classNumber=dbn.getOutput(data.testData);
errorAfterBP=sum(classNumber~=data.testLabels)/length(classNumber)

Matlab autoencoders

● Unsupervised
● Flexible
● Generative
● Have great examples:

https://www.mathworks.com/help/nnet/examples/training-a-deep-neural-netwo
rk-for-digit-classification.html

● Have good documentation
● More black-box-like than DBNs in terms of computational modeling research

https://www.mathworks.com/help/nnet/examples/training-a-deep-neural-network-for-digit-classification.html
https://www.mathworks.com/help/nnet/examples/training-a-deep-neural-network-for-digit-classification.html

Using Matlab autoencoders

autoenc1 = trainAutoencoder(xTrainImages,hiddenSize, …
'MaxEpochs',400, …
%%% additional parameters %%%
);

xTrainImages: a cell array or a matrix with training data
hiddenSize: number of hidden nodes of this layer

figure()
plotWeights(autoenc1);

xReconstructed = predict(autoenc,myImage);
imshow(xReconstructed{0});

A pure autoencoder is only good for reconstruction, but it can also be used to create deep networks

Stacking autoencoders

feat1 = encode(autoenc1,xTrainImages);

feat1 now represents training data

autoenc2 = trainAutoencoder(feat1,hiddenSize2, …
'MaxEpochs',100, …);

feat2 = encode(autoenc2,feat1);

Now feat2 is just data that can be used as any other data for training networks. We can train a softmax
layer to classify this set of features, but we need labels (tTrain) for that.

softnet = trainSoftmaxLayer(feat2,tTrain,'MaxEpochs',400);

Now we can stack these layers into a single network that will perform all the sequential encoding and
classification automatically

deepnet = stack(autoenc1,autoenc2,softnet);
view(deepnet)

Stacking autoencoders

deepnet = stack(autoenc1,autoenc2,softnet);

Only one layer here is trained using supervised learning.

We can think of this as a “pre-trained” network. We can fine tune it by training the whole network on a set
of data.

deepnet = train(deepnet,xTrain,tTrain);

This way the use of autoencoders helps initialize a deep classifier so training becomes fine tuning and the
results can be expected to be better than with simple training.

Convolutional neural networks

● Classifiers
● Supervised
● Good for images: translation invariance, local connectivity
● Can be built in Matlab NN toolbox(needs to be assembled from layers)
● There are good examples

https://www.mathworks.com/help/nnet/deep-learning-image-classification.html
● Documented
● (There are convolutional autoencoders that allow the “Good for images”

benefits to be used for generative networks, but you have to use external
toolboxes for this)

https://www.mathworks.com/help/nnet/deep-learning-image-classification.html

Setting up Matlab networks

Function trainNetwork can work with different data.

● A set of images (imageDatastore object)
● A 4-D array (width, height, channel, images)
● Other

myNet = trainNetwork(trainData,layers,options);

We need to define layers and options

Setting up layers for a convolutional network

layers = [...
 imageInputLayer([28 28 1])

 convolution2dLayer([4 3],12)
 reluLayer
 crossChannelNormalizationLayer(4)
 maxPooling2dLayer(2,'Stride',2)
 convolution2dLayer(5,16)
 reluLayer
 crossChannelNormalizationLayer(4)
 maxPooling2dLayer(2,'Stride',2)
 fullyConnectedLayer(256)
 reluLayer

 fullyConnectedLayer(10)
 softmaxLayer
 classificationLayer];

Setting up options and using the network

options = trainingOptions('sgdm',...
'MiniBatchSize',5,...
'MaxEpochs',3,...
'InitialLearnRate',0.0001);

myNet = trainNetwork(trainData,layers,options);

predictedLabels = classify(myNet,testData);
accuracy = sum(predictedLabels==testLabels)/numel(predictedLabels)

Thank you

