* Preprocessing and genetic algorithms

Dr J.W. Maclnnes
June 8t 2017

Data pre processing

* Neural nets of sufficient complexity can find
any nonlinear pattern in our data

* Data preprocessing
— Can make that job easier (simpler network)

— Help explain which pattern the neural net found
(its related to the aspects you processed)

— Prevent you from learning ‘unexpected’
associations

* (see... “Driving forces in free
visual search: An ethology”. 2014.
WJ Maclnnes, AR Hunt, MD
Hilchey, RM Klein)

 Eye movement data is a sequence
of X-Y coordinates plus saccadic
and fixation features (saccadic
velocity, fixation duration...

 But XandY locations are artificial
measures of screen pixels, not
something that’s important to the
visual system
— Although it is loosely related to
retinal coordinates
— And even then only in
combination with image saliency
properties and other relative
locations

Simple processing

Amplitude and direction of
saccades in absolute screen

coordinates
Angle of saccade

— Absolute and relative coordinates
— Compared to one back, two back,

A time sensitive algorithm could
learn these, but why not include

them directly if we have

theoretical reasons to consider

them important (like IOR)

- a) relative
% b) absolute

Absolute

Amplitude (dva)
ADs0bte

Direction

How do you shoot a purple
elephant?

Search as a sequence of fixations
and saccades over time

Question: Are there patterns in the
sequences?

— How do we quantify those
patterns

Genetic algorithms are used in
Data mining (business) and

genetics for detecting temporal GATCATCGAA.......
patterns in sequences ‘1'

But these sequences consist of
discrete values from a finite set .
discret {ATC}; {GA}

Processing Steps

Convert key continuous saccade and fixation
information to discrete items

For large strings, get collective of smaller
substrings

Establish similarity/distance measure between
substrings

Search for common substrings

Groups of similar substrings

1: Sequences to dlscre;e Strmgs

Absolute Fixation Grid
— 50 pixel squares, No FD
— Global patterns

Absolute Saccade Angle
— Saccade angle + FD dyads

— 18 bins of angle, and 20 bins
of FD (50ms)

Relative Saccade Angle 1B A R

— as above, but relative to 1-
back location

Relative Saccade Angle 2B

— as above, but relative to 2-
back location

Aa Ba Ca Da
Abs Grid (CbCaCc)
Ab Bb b Db Abs Ang (Hble)
Rel AnglB (Be)
Ac Bc Cc Dc
Grid Dir FD
Left =A 0°-10° =A 0-100 =a
Right =U 90°-100° = | 900-1000 =
Top =a 170-180° =R
Bottom =p

2: Substrings

Each trial is now strings of 100’s of
dyads

Overlapping sliding window?

— Leads to non meaningful comparison
because of ‘overlap’ similarity
(Keogh, 2003)

Use non-overlapping window or
random selection of a subset of
possible strings

Subsequences from non-overlapping
sliding window of size 1 — 5 dyads

Find Similar : Heuristic function

 Many Al problems require a way to
measure the quality of different
choices

— We have used Euclidean distance, and
city block distance as two examples
for spatial distance

— Cosine similarity measures the angle
between two vectors and was used in
LSA for semantic similarity

* For this dataset, we need a way to
compare strings

3: Distance Measure

Needleman/Wunsch (NW)(1970): 1: AGTY
String similarity measurement used 2: ASY
in genetics
Cost 2’ A_SY

— insertions, deletions and gaps 1: AGTY
Count 2: ATV

— Final number of matching characters

Count: 1011

Score

— (Count — cost)/string length NW SCORE:

— Range-1...+1 =(3-1.1)/4

=+0.475

Results: (For anyone interested)

2.

4.
5.

Scores are strongly negative, rejecting simple scanning strategies
Search data different from random walk

Random walk shows stronger patterns for absolute grid

Local patterns (Angles) are stronger than global patterns (Grid)
Relative patterns are stronger than absolute coordinate patterns

These patterns are equal combination subject (strategy) and
image (salience)

0,2
0
0,2
0,4
0,6
0,8
-1

% % 3k

!

%k %k %k

Abs Grid

% % 3k

%
Abs Ang

% % 3k

* %k k

Rel AnglB

* %k 3k

Rel Ang2B

Image
Subject

Random

Search for common :
Genetic algorithms

* Primarily a search

algorithm

* Search for best htt://
combination of www.youtube.com/
parameters when there watch?v=HgWQ-gPIvt4
are t0.0 m.any ; http://rednuht.org/
combinations for ‘brute genetic_walkers/
force’ search

* Requires some measure https://
‘best’ www.youtube.com/

. watch?v=KjOtNMQxxXo
— Fitness function/heuristic

B W

Generation X

What are the key parameters and
variables of your model?

— Define the possible range of values they
could take

Begin with 50(?) random models, each
one possible combination of values

— This is generation one

Test each model of the current
generation against some fitness
function

Selection: Keep the top 20(?) winning
models

Mutate or crossover an additional 20
Add a new set of 10 random models
Return to step 1 as nhew generation

Generation N N+1
Mutate ARTY ARKY
Splice ARTY, GLGS | ARGS, GLTY
Merge ARTY, GLGS | ARTYGLGS
Random ARTY, GLGS | EWCF, JYTE

Notes:

Merge is only possible if you allow
new generations of different length
Elitism is simply keeping some of the

best in a generation ‘as is’

4: Search for Common Substrings

What do these patterns look
like?

Brute force search is not
feasible for strings of this length

Genetic algorithm

a. Select ‘good’ candidate — — —
strings from a probability Position 1 | Position 2 | Position 3.

weight matrix (PWM)

_ _ Elementa | P()
b. Search for candidates in

data, and weight/sort by Element b

Needleman Wuncsh

c. Keeptop 20 of 50 and fill Element c

remaining 30 with mutate,
splice, merge and random

d. Repeatatb Probability weight matrix lists the likelihood
of each element falling in each position. Its

useful first step in many algorithms where
order matters

Patterns were all
single or double saccade

m AbsAng RelAnglB RelAng2B

Uses

Optimize parameters of model

Search through ‘space’ of computational models

— What are the best settings/hidden nodes for your
neural net?

Eye tracking and EEG data, find best input
parameters, or segquences of parameters
— Maclnnes, Hilchey, Klein and Hunt, 2014, APP

Search through expt parameters?
— Proposed as alternative to Latin squares design

Unsupervised learning

* What if we don’t have input/output pairs
needed for supervised learning

— Like back propagation and Bayesian Nets

* Unsupervised learning look for patterns or
groups given our data parameters
— Also called ‘clustering’
— Loosely related to principle component analysis

which tries to match variance of original data with
reduced dimensions

K Means clustering

1. Choose the number of clusters
2. Choose a distance measure
between points

1. Is data point A closer/more similar to
Bor(C?

3. Randomly pick point as ‘centroid’ of
each cluster

4. Assign every data point to its
nearest centroid

5. Each cluster gets a new centroid
that is the centre of all assigned
points for that cluster

6. Repeat at 4, until some minimum
error is reached

* Fuzzy clustering

— Points assigned to all centroids, but to
varying degree

Variant: density based .

DBScan

— Density based or spatial path
grouping

Advantages

— Allows arbitrary shaped
clusters
— No need to specify #clusters

— OQutliers and noise do not affect
clusters

Free toolkit for all clustering
algorithms
— http://www.mathworks.com/

matlabcentral/fileexchange/
7486-clustering-toolbox

=

- .
= o &4 .
o Voo ""
- % .
. Lr) . e
.. 0. * o0,
. " % *
o . " : ,o-o'.-.
'.:. 1 § . £
L4 . .’ .
e = . o L% S
4 e .o .':
” ~.M .
35
. .
2..%3
‘s
..

01 02 03 4 1

Choose a starting point for a new cluster
Any point within X distance is added to the
cluster
While points are near, add them to the
cluster and repeat 2 with new points in
cluster until no new points are added
Once no new points can be added

1. If there are a minimum number of

points, it is a cluster

2. if not, label them as noise/outliers
Go to step one with a new, unvisited
random point

Uses

* Levels for a hidden state in a Bayesian
network

example

How does instructed
task influence saccades

Black box model only
includes observable

input/output

Clustering of saccadic
and pupil properties
can help us make an
attempt at modelling
hidden attentional state

| Task I

Relative
Amplitude
A

Relative
Angle

Amplitude

Step 2: find clusters

Comparison of Dunn’s index for various number of clusters

0.034

0.032

* Dunn’s index helps us
choose best number of
clusters % S D —

° |ts a measure Of Number of clusters
compactness and
separateness of clusters

— Smaller index is better
* Test multiple number of
clusters, and choose the

one with the smallest
Dunn’s index

— In this case, 6

003

Dunn’sindex

Step 3: sanity check

Can we visualize the
clusters to make sure
they ‘look’ like real
clusters

— Easy for 2D data

For X-D?

— How do you shoot a
purple elephant?

— multidimensional scaling
like Sammon Mapping

— Then visualize in two
dimensions

1

s

=} o o
X = m

Fuzzy Sammon distance
= =]
n o

==}
S

¢) 2D Sammon projection of

Fuzzy cluster distance b) 2D Sammon projection of

cluster distance
-

19F

Sammon distance

d*; is distance in high dimension
d;is distance in low dimension

E is the calculated error for a given
projection

How can we minimize this error?
Gradient descent!

Result

3 Temporal plate

* New model with
hidden attentional
state

e Can still be tested
using existing data

* Can these attentional
state parameters be
tested on special
populations?

This week

Advice for those that
want to go deeper

— Code one of these
algorithms yourself from
scratch (Java, Matlab, C+
+)

— Al is learned by DOING

— These slides provide
‘pseudocode’

* More advice on projects

and data sets
— Questions? Examples?

Pseudocode

1.

Choose a starting point for a new
cluster
Any point within X distance is added
to the cluster
While points are near, add them to
the cluster and repeat 2 with new
points in cluster until no new points
are added
Once no new points can be added
1. If there are a minimum number
of points, it is a cluster
2. if not, label them as noise/
outliers
Go to step one with a new, unvisited
random point

Mixture models/mixture of Gaussians

* |f you suspect multiple
underlying distributions
for your data

* How we determine the
originating distribution of
an observation given
they likely overlap?

* How do we solve it?

— Expectation maximization

More plate notation!!!

N data points

K number of assumed sub-distributions
with some mean and sd

® probability of each K distribution
(some are more likely than others, and
can be thought of as prior probability of
that distribution. Must sum to 1)

z, which of the k gaussians do we
assign to (known, shaded) observation
X;?

Fk \ﬂf\
K

EM

Any time you want maximize parameter likelihood

— Works for statistical models only (those that contain
probability distributions, assume sample from larger
population, generative models)

— Dempster, Laird and Ruben, 1977
Very common algorithm for solving unknown
assignment

— Bayesian networks, Mixtures of Gaussians, temporal
algorithmes, ...

‘Gentle introduction’ for those who want to dig deeper

— http://crow.ee.washington.edu/people/bulyko/papers/
em.pdf

EM algorithm

Randomize latent/hidden/unknown variables X — set of observed data

0 . _ , _ Z — set of hidden variables
— For mixture of Gaussians, the latent variable is

the distribution to which each data point belongs @ — vector of unknown parameters

Expectation
— Compute the best values of all Z given @

Maximization Delay
— Use the new Z to compute better estimate for @
— Only parameters for a given Z are used to o0 |

estimate its @

Check log likelihood of solution, stop when it w
doesn’t change much from each iteration i 4
Improved: Instead of the hard version where R

a single Z is chosen for each X, calculate the ©l i
weighted p(Z | @) over entire set of X ks

k-4
50 T +:
¥,

40 Duration
1 2 3 4 5 6

EM of old faithful data

More on EM?

* Bonus reading for those interested (not
enough time to discuss in class)

— This is a powerful algorithm used in a lot of
machine learning

e Tutorial on maximum likelihood estimation,
2003, Jae Myung)
— The M step

Utility and decision making

Decision making needs more than just a representation of
the world state

It also needs an understanding of the quality of choices and
actions
This is often modelled as ‘Utility’
— The expected benefit of a possible result
— Different from the likelihood of that result
Influence diagram = Utility + Bayesian probability
— (AKA decision network)
Influence diagrams are often about ‘optimal decision

policy’
— Its our job to make sure optimal means ‘closely tied to the way
people do it’

Genlie

2 extra nodes required

Decision definition node

— Simply defines the possible
decisions to make

— Yes, no, maybe
Value (Utility)

— Receives connections from decision
and a chance node

Must define value of each decision
under each possible chance node = Node properties: Financial Gain

Investment Decision

[?
Financial
Gain =

Success of
the venture

Expert
forecast
7]

resu |t General Definition I Format | User properties |
. . BR3 g
Can, of course, be combined with = 'f i : _
uccess of the...|[=] uccess = allure

more Complex netWO rkS Investment De... Invest Donotlnvest Invest [Donotlnvest

. D[Vale ooy 500 6000 500
Note: decision nodes can also be
direct parents of chance nodes [o

— This is used to reflect ‘sensitivity’
or best and worst case range of
probabilities

Utility for fallacies

Remember your model must reflect actual
choices and probabilities, not optimal

Conjunction fallacy

— Lindais 31 years old, single, outspoken, and
very bright. She majored in philosophy. As a
student, she was deeply concerned with
issues of discrimination and social justice,
and also participated in anti-nuclear
demonstrations.

Which is more probable?
— Linda is a bank teller.

— Lindais a bank teller and is active in the
feminist movement.

People consistently estimate the second as
more likely

— Even though p(a”b)<= p(a)
Other probability theories may inhently
work better for
Pothos, E. M., & Busemeyer, J. R. (2013).
Can guantum probability provide a new
direction for cognitive modeling?.

P(b)

Learning Utility

Not every problem has nice, labelled ‘correct” answers for
supervised learning

Even when feedback exists, it is often delayed

— Chess is the typical Al example: how does each move contribute to the
win?

Language acquisition might be a better example for us

— What contributes to long term acquisition and comprehension?

— Short term repetition and testing may or may not reflect this long
term goal

Reinforcement learning is a branch of learning algorithms to
achieve long term reward

Reinforcement is related to the concept from animal behaviourism

From an Al agent perspective, reward is a sensory input, but the
agent must have an internal mechanism for recognizing this signal
as separate from other input

What to learn

All reinforcement learning is
about maximizing reward

Utility based agent learns
utility function

— Stateless. Simply which is best

action?
Q-learning finds an action-
utility function

— maximizing utility for each
action-state combination

Reflex agents are deterministic

— Policy for direct mapping from
state to action

Markov decision process with three
states. Similar to DFA, but actions are
probabilistic and modelled explicitly
After every state transition, some
response from the environment is
interpreted as reward

Q-learning

* No previous knowledge of the world is
assumed and all action-utility must be learned

* Exploration and exploitation are both valuable
in different situations

 We will cover this in more detail in the
temporal algorithm class

Social psychology models

 Autonomous agents are
a very useful paradigm
here

* Each agent observes the
environment (sensors)
and can only understand
other agents through
observing their actions in
that environment

Action

Action

Agent

Perception

World

Perception

Agent

Modelling others and TOM

Theory of mind — ability to see others as rational actors
Perspective taking — understanding a situation from
another’s point of view (likely not possible without TOM)
Recursive modelling

— Level 0 : model opponent as non-agent; simple object in
environment

— Level 1 : understand opponent's model of world
— Level 2: model opponent’s model of your model of the world

Modelling deception (Thagard, 1992)
— Second order modelling is required for deception

— | need to understand my opponent’s likely model of me in order
to manipulate it

Mixture of experts (MOE)

Neural networks (Experts) trained on sub population of
the data
Gating mechanism which chooses between experts

— Also learned algorithm, perhaps another neural net or
classifier

Not necessarily more accurate than single neural net
— But experts might have fewer hidden nodes and train faster

— Could also reflect the what you are trying to model better
than black box network

Hierarchical option exists for different depths of
representation

A similar idea can be implemented in probabilistic
models using ‘Boosting’ or ‘Bagging’

Constraint satisfaction
(By popular demand)

* Another search algorithm
when brute force is not

feaSible X - set of parameters or

* Also useful when its easier varanies
) - the domain for each
to define parameters you variable
don’t want C - set of constraints
Eg:

* Does not search for X, 1= X,

optimal values of X, == ‘Fast’

Between(X,Y,Z)

parameters, just a set of Al

values that satisfy all of
the constraints

Examples

Any efficient search algorithm can be used
to find parameters of a statistical model
— Like Hidden Markov Models

Weighted constraints could support
connectionist learning of symbols

— Symbolic functions from neural computation
(Smolensky, 2012)

— Thanks to Jon for this one, perhaps more on
class with models of language
As an ‘optimal’ problem solver to compare
with human performance

— Eg ask subject to assemble Ikea furniture, CSP
can suggest possible orders

— Shelves >= Frame + 10

— (shelves must start after the frame is in place
and the frame takes 10 minutes)

Algorithm

At each iteration, the solver can do one of
two things

— Assign a value to a parameter from its domain
(this is traditional search)

— Reduce the domain size of unassigned variables
(this is what results in a huge time savings)

How do we choose when to assign a value to
a parameter, which parameter and which
value?
— There are simple path based search algorithms
like A* that can be useful here
Option: preferences instead of, or in addition
to, constraints
— These will determine the order that you try
parameter values

Option: instead of doing constraint
propagation with the search, do it as a pre-

processing step

Option: parameters have continuous domains
— These are usually solved with linear programming

Pseudocode : this is done recursively (not
iteratively with loops) or with a queue

Create a network with edges for each
constrained pair
Assigning a value for the most
connected parameter from its
current domain
Constraint propagation: Spread
through the network reducing the
domain of each parameter based on
set of constraints
If any parameters reduce its domain
to zero, back up and try a different
previous parameter value

1. (this step is why you need

recursion)

If any parameters still have more
than one value in domain, go to step
2

Data structures

This is a small taste of a computer science course, and may help you
understand these algorithms a little more

— Multiple classes are taught on data structures, their uses and the
algorithms that use them

— | will mention only a few basic ones
The data structure is how you organize the data to make it easier for
the algorithm to manipulate and search

— Some algorithms require specific datasets
The simplest data structure you already know - the array/vector/
matrix

— Its very efficient to look at value of any element

— Very inefficient to remove elements
Some of these things we will talk about can be implemented with
vectors and a lot of extra code, but...

— Having a specialized data structure allows you to focus on problem, and
not the low level implementation

— Tools like this help you think at a more abstract level which makes
mistakes and bugs less likely

Data structures - Queue

First in, first out (FIFO)

— Think of a nicely organized British bus stop
Add() a new item

Remove() the current front of the queue

— Sometimes you’ll hear these called push and pop
Uses:

— CSP: you no longer have to keep track of which parameters have been
visited for each stage of the algorithm

— Very efficient adding and removing
— Inefficient reading or finding random element

Variant: the Stack
— First in Last out (FILO)
— Think a stack of pancakes

Data structures -

Root element is always the first
accessed

— Every other element is accessed by
traversing the tree

Every element, including the root,
contains its parameter/value plus links
to one or more leaves/children

— Traversing the tree is done recursively

Complicated, but very efficient for
Add(), Remove()

If you build the tree with any
relationship between children, the any
search on that relationship is efficient

— Child1 <= currentnode <= child2

Tree

Recursion consists of a
function calling itself.

This can immensely simplify
code compared to iterative
looping

Function TraverseTree(node)
(do what you want with
the current node here)
If HasChidren(node)

TraverseTree(childl)
TraverseTree(child2)
end

Call this function with the root
node first, it will then traverse
the entire tree

This works because every sub-
tree is also a tree

More psuedocode

* Foe those that want to try themselves, this is
the style of pseudocode you can find in books

function AC-3(¢sp) returns false if an inconsistency is found and true otherwise
inputs: csp, a binary CSP with components (X, D, C)
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(X, X;)« REMOVE-FIRST(queue)
if REVISE(esp, X;, X;) then
if size of D; = 0 then return false
for each X in X;.NEIGHBORS - { X} do
add (X, X;)to queue
return frue

function REVISE(esp, X;, X ;) returns true iff we revise the domain of X;
revised «— false
for each r in D; do
if no value y in D; allows (z.y) to satisfy the constraint between X; and X; then
delete » from D;
revised «— true
return revised

Test recursive modelling and

deceptior N

L}

Agent/automaton in 3D shooter
environment

Must model opponent to win
match and predict location

Tested three models
— Neural network

— Mixture of experts _ : :
— DFA 3.2 1 Y
. . | /’I ',
Mixture of experts was split by ’ SN

&
0
\._\
o

finding clusters of behaviour,
then training expert networks

[S
xl
-
-~
-~

Four depths of recursion
— 0..3

Maclnnes, Banyasad and Upal,
1999; Maclnnes, 2004; 2006

b
| 5] |) - o I

I

o

hEL

MU ET MmN E

MOE performed best (lower) for
believability and performance.
Recursion did not impact either

measure

Comparing and testing models

* What do we want from models
— Classification? Maybe
— Improved understanding of cognition!
— Exploration of theories

Too few parameters?

* We know that too
many parameters and
our models may over-

ﬁt Men Women
e But What about too Applicants 8,400 4,300
few parameters? admitted 44% 35%

e Data from university
admissions, California

— Case was brought up
for discrimination

Bias?

Simpson’s Paradox

But no bias for any of the 4 faculties????

Women tended to apply for departments with very
low acceptance rates

Men applied for departments with much higher
acceptance

Leaving key parameters out of your model will be as
problematic as laving them out of your analysis

Men Women
Dept Applied Admitted Applied Admitted
A 825 511 (62%) 108 89 (82%)
560 353 (63%) 25 17 (68%)
325 120 (37%) 593 225 (38%)

o O

191 53 (28%) 393 114 (29%)

Individuals as parameters

 New statistical methods treat participants as random
variables (LME), why not models?

 Parameters in statistical models (like Bayesian
networks) can be tested like any other distribution

— Including the degree that individual data (subjects) fit that
distribution

— The simplest practical method would be have you model
generate a sample distribution and run a t-test

* Be careful of reading individual differences with
minimal or single observations per individual

— Another reminder that subgroups can be an alternative

Comparing and testing models

Testab|I|ty /[falsifiability
Can we identify the ‘correct model’
— Does it even exist
— Data fitting merely show a model is sufficient to explain the data, not necessary

— Maybe not, and this is not a unique problem to psychology... remember there are an infinite
number of models that could describe our solar system

So why do we try?
— Because goodness of fit is not the only criteria
— Because goodness of fit can rule out many models

So some models can be falsified, can all?
— See Roberts and Pashler (2000)
— It depends on the predictive scope of the model
Number of free parameters, in general, increase predictive scope
— But also increase flexibility/generalizability
— Trade off?

Eliminate process models altogether and focus on descriptive models?
— ‘Rational analysis of behaviour’ — Anderson

Or use other complementary measures in addition to fit
— Imaging, theoretical overlap, lesion, special populations, individual differences

Wrong vs useless

If we can’t prove a model correct, does that make it
useless?
How wrong is it?

— Verisimilitude — a measure of partial truth (popper, 1963)
*Does the model make accurate predictions that would
have been difficult to predict without the model
Does the model explain anything

— Unify desperate processes?

— Suggest How observations arise from the data

— Its not a very good explanation if we don’t understand it

— Reductionism increases understanding just as it decreases
correctness (*cough®™ model *cough* cat)

Are there any data that could prove the model incorrect?

Neuroscience and correctness

* |maging data could provide constraints or verify
correctness of a model’s sequence of cognitive
processes

— ‘Where’ and ‘when’ can constrain, but not explain, models
of ‘how’

— And remember, for modelling, our ultimate goal is to
improve our understanding of ‘how’

* To be a proper constraint, imaging data would need to
be reliable for subjects across similar trials

— Good: fMRI BOLD variance is less for within subject than
between subject (Bennet and Miller, 2010)

— Bad: average overlap of significant signal is 29% of voxels
(B&M, 2010)

Neuroscience and falsifiability

* For imaging data to constrain a model, the model must
consider the neural basis

 Smith and Jonides (1997) suggested their fMRI data
supported the Baddeley (1986, ++) model of memory

— Coltheart (2006) disagreed since the Baddeley model
makes no claims about neural correlates
— There is no data that could have falsified Baddeley’s model

— In this case, its not the imaging data or the model that are
necessarily faulty, but the interpretation of support

* For any data to be said to support a model, there has
to be some data of that type that could falsify it

Neuroscience and modelling

e So what is the correct use of nheuroscience
data?

* Testing the diffusion model

* These are all machine learning algorithms
— Al vs machine learning

* Agent based models (model perception and
action and time)

* Reinforcement learning

