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Background and ambition Proposed model

The current research focuses on the creatfion of a neural Classic Saliency
network using Restricted Boltzmann Machines (RBM) with a T g
‘Leaky Integrate & Fire’ component based on the classical Itti
and Koch saliency model. The aim is to teach it fo generate
human-like eye movements, but in a biologically more
accurate way as compared to the saliency model, thus
aiming at modelling the human superior colliculus (SC). The
study suggests that each layer of the RBM would make
different conftributions to the entire model: for instance, one
of the layers could represent the frontal eye fields in the S o 5 .
human brain. il - nsainech
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Goal: matching the spatial distribution using RBM instead of classic
Why go Deep? salience and adding a temporal component.

- Useful tool for modelling high levels of abstraction (vision, speech);

Powerful algorithms for prediction and accuracy; .

Have a generative component; Initial results

Classic salience models lack biological temporal distributions; [ s IREeR— . o A e | gl il |

Flexible (RBM's may be ‘stacked’ onto each other, with the previous

RBM acting as hidden input to the following layer);

Layers of the network may be visualised as layers of the visual cortex

(the first layer corresponding to V1, etc.)
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Figure 2. A demonstration of the bad matching of | Figure 3. A visualisation of a ‘stacked’ RBM structure of a
the Itti and Koch salience model with aleaky deep belief network.
integrate and fire layer to human saccade latency

data (Maclnnes, 2017).
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