
21.03.2017

1

March 17

update

21.03.2017

2

• Conference
• Data Analytics and Management in Data

Intensive Domains» (DAMDID)
– Medicine, Neuro are included

• http://damdid2017.frccsc.ru/en/conference_shor
t.html

• PhD Workshop
– Paper submission deadline June 23, 2017

• Regular submission date
– Paper submission 18.06.2017

• Now: Liya and information gain
• Saturday 25th

– First session on Matlab and psychtoolbox
– Bring your laptop with matlab if possible

21.03.2017

3

• Requests for topics?
• Wolfe and Horowitz next meeting?

– Five factors that guide attention in visual search
– Jeremy M. Wolfe & Todd S. Horowitz

Convexity
• Convex (shallow) architectures

can be mathematically proven to
have single global minimum
– Remember, we want to find

minimum error?
– Logistic regression, Support Vector

Machines
• The price of convexity is scale

– Any ‘shallow’ algorithm can learn
anything a deep one can, in theory

– But O(n^2)…
• More detail

http://videolectures.net/eml07_le
cun_wia/

21.03.2017

4

Concavity

Concave local
prevents you from
getting over the
hill?

Add another
dimension and go
around the hill?

They work. Even without theoretical guarantees,
the empirical evidence is overwhelming.
When empirical evidence and theory disagree,
the theory is wrong.

• The brain must use concave learning.
• Primate visual system has 10^20 layers of neurons (from

retina to infero-temporal), but only 10^9 seconds in a
lifetime

• Gradient descent in neural networks are very unreliable
when the network is small
– Or ‘exactly the right size for the problem’
– So why not make the network much bigger than necessary?
– Lots of local mimima most of them are pretty much the

same/good
• Deep, concave architectures trade space (layers) for time

(learning efficiency)
• Convinced? Lets look at RBM

21.03.2017

5

autoencoder

Boltzman machine

• Like a Hopfield net, but
stochastic and generative
– Still Hebbian though

• Completely connected is
theoretically interesting,
but inefficient and
impractical to train
– Training examples

needed increase
exponentially with
machine size

Three visible and 4 hidden units

21.03.2017

6

Restricted Boltzman machines
• Restriction: No connections within layer

– Significantly reduces complexity
– Still effective learning

• Extended versions can use real data, not just
binary

• Successes in speech recognition software
– Retrieve known patterns from noisy or incomplete

data, remember?
• After training, the hidden layer activity can be

used as ‘visible’ input layer to a higher level RBM
– This is a preview of how ‘Deep Learning Neural

Nets’ are implemented

• Hidden unit learn common ‘features’ of input
– Text? -> topics
– Images? Features, edges

Similar, but Restricted
Boltzman machine

• Trained with ‘contrastive divergence’
– MUCH faster than gradient descent
– Only allowed because of the new rule of no

interlayer connections
– Learning rate, momentum, weight cost, number of

hidden nodes, etc is still hard to determine, but
this is where the current research is being
conducted

21.03.2017

7

Training energy (see hopfield, 1982)

• Every Visible/Hidden pair of vectors has
an energy

• Vi, Hj
– State of visible unit i and hidden unit j

• Ai, Bj are their biases
• Wij is the weight between I and j

Evaluating energy of a pair
• Given that formula, is a given v/h pair energy

good or not?

• Calculate the probability of a pair by comparing
its energy to all other possible energies

• Z = sum of energy for all possible pairs of v,h

21.03.2017

8

Evaluating energy of an input
• How much influence does this input have in training

• Calculate the probability of a input by summing its
energy over all possible hidden vectors’ energy

• This can be changed by adjusting bias and weights in
the original energy function

Changing energy
• The contribution

• Z = sum of energy for all possible pairs of v,h

21.03.2017

9

This part is easy This part is difficult
Hinton’s big contribution was
to devise a good estimate of
this using contrastive
divergence (2002)

We won’t go any deeper than this, unless
you want to construct the algorithm
yourself

This is entirely unsupervised learning! You need lots of data, but it
doesn’t have to be labeled to infer what latent features are in the data

Generative

• Given a vector of hidden units, can we
generate a possible/likely input?

• Gibb’s sampling

21.03.2017

10

classification
• The hidden units simply learn input features.
• If we want to predict something, we need another layer
• Discrete category predictions (classification) is usually done with Softmax

– RBM + softmax won the netflix challenge for recommending movies
• The RBM layer is unsupervised, but the softmax uses supervised learning

– Requires labeled examples of classes to predict
– But builds on weights in the RBM layer that have previously been learned

• Want to predict what movies people will like based on previous watching
habits?
– First learn RBM layer of movie topics/features/themes by feeding in as much

info on movies as you can find
• (Reviews? Ads? Tags? Watching habits?)
• Input = observed movies, hidden = unobserved learned features

– Then add softmax layer and tweak weights with history – preference pairs
• Input = observed movies,
• hidden = unobserved learned features
• Output = P(like movie X)

• RBM
pseudocode

